Формулы и Задачи (Информатика 10)
Формулы
N = 2i
N - мощность алфавита (количество знаков в алфавите)
i - информационный вес символа алфавита (количество информации в одном символе)
I = K * i
I - количество информации, содержащееся в выбранном сообщении (информационный объем сообщения)
K - число символов в сообщении
i - информационный вес символа (количество информации в одном символе)
Q = NL
Q - количество разных сообщений
N - количество символов
L - длина сообщения
Формула Хартли:
I = log2N
I - количество информации, содержащееся в выбранном сообщении
N - количество сообщений
Римская система счисления
I – 1 (палец),
V – 5 (раскрытая ладонь, 5 пальцев),
X – 10 (две ладони),
L – 50,
C – 100 (Centum),
D – 500 (Demimille),
M – 1000 (Mille)
Перевод чисел из других систем счисления в десятичную систему счисления
Развернутая запись целого числа:
a3a2a1a0 = a3 * p3 + a2 * p2 + a1 * p1 + a0 * p0
Правило перевода числа из любой системы счисления в десятичную систему счисления - умножаем каждую цифру исходного числа на основание системы счисления в степени разряда, в котором находится эта цифра, а затем всё складываем.
Запись через схему Горнера:
a3a2a1a0 = ((a3 * p + a2) * p + a1) * p + a0
p - основание системы счисления в котором представлено число.
Пример:
637510 = 6 * 103 + 3 * 102 + 7 * 101 + 5 * 100
637510 = ((6 * 10 + 3) * 10 + 7) * 10 + 5
12345 = 1 * 53 + 2 * 52 + 3 * 51 + 4 * 50 = 19410
12345 = ((1 * 5 + 2) * 5 + 3) * 5 + 4 = 19410
Развернутая запись дробного числа:
0,a1a2a3a4 = a1*p-1 + a2*p-2 + a3*p-3 + a4*p-4
Запись через схему Горнера:
0,a1a2a3a4 = p-1 * (a1 + p-1 * (a2 + p-1 * (a3 + p-1 * a4)))
p * (0,a1a2a3a4) = a1 + p-1 * (a2 + p-1 * (a3 + p-1 * a4))
p - основание системы счисления в котором представлено число.
Пример:
0,6375 = 6 * 10-1 + 3 * 10-2 + 7 * 10-3 + 5 * 10-4
0,6375 = 10-1 * (6 + 10-1 * (3 + 10-1 * (7 + 10-1 * 5)))
0,12345 = 1 * 5-1 + 2 * 5-2 + 3 * 5-3 + 4 * 5-4
0,12345 = 5-1 * (1 + 5-1 * (2 + 5-1 * (3 + 5-1 * 4)))
Задачи
Алфавитный подход к измерению количества информации
Определить количество информации в 10 страницах текста (на каждой странице 32 строки по 64 символа) при использовании алфавита из 256 символов.
- информационная ёмкость символа: 256 = 28 =>> i = 8 бит = 1 байт
-
количество символов на странице:
32 * 64 = 25 * 26 = 211 -
общее количество символов:
L = 10 * 211 -
информационный объём сообщения:
I = L * i = 10 * 211 * 1 байт = 20 Кбайт
Системы счисления
X10 X16 X8 X2
Логические операции
Логической операцией называется выбор решения (действия), исходя из заданной ситуации, определяемой набором факторов (условий).
Зависимости между логическими функциями (операциями) и логическими переменными устанавливаются с помощью таблиц истинности. Используются следующие логические операции: НЕ, И, ИЛИ, исключающее ИЛИ, тождество.
Логическая операция НЕ (инверсия, операция логического отрицания). Действие, которое определяется операцией НЕ произойдет, если отсутствует фактор его определяющий.
Таблица истинности для операции НЕ имеет вид:
A | |
0 | 1 |
1 | 0 |
Действие, связанное с операцией НЕ можно записать следующим образом:
Логическая операция И (конъюнкция, операция логического умножения). Действие, которое определяется операцией И произойдет, если выполняются все влияющие на него факторы (условия).
Таблица истинности для операции И имеет вид:
A | B | X=A^B |
0 | 0 | 0 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Действие, связанное с операцией И можно записать следующим образом:
X = AB = A*B = A ^ B
Логическая операция ИЛИ (дизъюнкция, операция логического сложения). Действие, которое определяется операцией ИЛИ произойдет, если выполняются хотя бы одно (любое), определяющее его условие.
Таблица истинности для операции ИЛИ имеет вид:
A | B | X=A v B |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 1 |
Действие, связанное с операцией ИЛИ можно записать следующим образом:
X = A + B = A v B
Логическая операция Исключающее ИЛИ. Операция Исключающее ИЛИ осуществляет суммирование по модулю два т.е. без учета переноса в старший разряд.
Таблица истинности имеет вид:
A | B | X=AB |
0 | 0 | 0 |
0 | 1 | 1 |
1 | 0 | 1 |
1 | 1 | 0 |
Действие, связанное с операцией Исключающее ИЛИ можно записать следующим образом:
X = A B
Действие, связанное с операцией Импликации можно записать следующим образом:
X = A → B
Таблица истинности Импликации имеет вид:
A | B | A → B |
0 | 0 | 1 |
0 | 1 | 1 |
1 | 0 | 0 |
1 | 1 | 1 |
Операция тождество. Операция тождество определяет тождественность аргументов.
Таблица истинности для операции тождество имеет вид:
A | B | A Ξ B |
0 | 0 | 1 |
0 | 1 | 0 |
1 | 0 | 0 |
1 | 1 | 1 |
Действие, связанное с операцией тождество можно записать следующим образом:
X = A Ξ B
Диаграммы Венна (круги Эйлера)
Поиск номера сети
Необходимо найти номер сети по IP-адресу 12.16.196.10 и маске 255.255.224.0.
255. | 255. | 224. | 0 | ||
IP-адрес | 12. | 16. | 196. | 10 | - ip-адрес (узла, компьютера и т.п.) |
IP-адрес | |||||
маска сети | 1111 1111. | 1111 1111. | 1110 0000. | 0000 0000 | |
адрес сети | 0000 1100. | 0001 0000. | 110x xxxx. | xxxx xxxx | - эта часть относится к адресу сети - она взята из ip-адреса, но взяты те цифры, напротив которых стоят единицы остальные цифры справа надо дополнить нулями, чтобы общее число цифр стало равным 32. Получится следующее: |
адрес сети | 0000 1100. | 0001 0000. | 1100 0000. | 0000 0000 | - полный адрес сети теперь каждую октаду (последовательность из 8 цифр, разделены точками) переводим в десятичный вид. Получаем: |
адрес сети | 12. | 16. | 192. | 0 | - полный адрес сети (в десятичном виде) |